Examine how activation energy and heat of reaction affect the position of equilibrium

[cs_content][cs_section parallax=”false” separator_top_type=”none” separator_top_height=”50px” separator_top_angle_point=”50″ separator_bottom_type=”none” separator_bottom_height=”50px” separator_bottom_angle_point=”50″ style=”margin: 0px;padding: 45px 0px;”][cs_row inner_container=”true” marginless_columns=”false” style=”margin: 0px auto;padding: 0px;”][cs_column fade=”false” fade_animation=”in” fade_animation_offset=”45px” fade_duration=”750″ type=”1/1″ style=”padding: 0px;”][cs_text]Equilibrium and Acid Reactions > Factors that Affect Equilibrium >[/cs_text][cs_text]As we have explained from the collision theory, the kinetic energy of a gas is directly proportional to temperature. As temperature increases, molecules gain energy and move faster and faster resulting in higher probability that molecules will be moving with the necessary activation energy for a reaction to occur upon collision.

Activation energy is the minimum energy with which reactants must collide in order for a reaction to occur. The source of the activation energy needed to push reactions forward is typically heat energy from the surroundings.

The Heat of Reaction is the change in the enthalpy of a chemical reaction. In endothermic reactions, (ΔH>0), heat is absorbed with the reactants. For example:[/cs_text][x_image type=”none” src=”https://easychem.com.au/wp-content/uploads/2019/06/endothermic-reaction.jpg” alt=”” link=”false” href=”#” title=”” target=”” info=”none” info_place=”top” info_trigger=”hover” info_content=””][/cs_column][/cs_row][/cs_section][cs_section parallax=”false” separator_top_type=”none” separator_top_height=”50px” separator_top_angle_point=”50″ separator_bottom_type=”none” separator_bottom_height=”50px” separator_bottom_angle_point=”50″ style=”margin: 0px;padding: 45px 0px;”][cs_row inner_container=”true” marginless_columns=”false” style=”margin: 0px auto;padding: 0px;”][cs_column fade=”false” fade_animation=”in” fade_animation_offset=”45px” fade_duration=”750″ type=”1/1″ style=”padding: 0px;”][cs_text]This means more energy is needed to overcome the forces of attraction between molecules and to separate them from one another (the activation energy) than the energy gained when new bonds are formed.

In exothermic reactions, (ΔH<0), heat is released with the products. When separated molecules join together, enough energy is released to overcompensate for the energy required to break reactant bonds. In this oxidation reaction:[/cs_text][x_image type=”none” src=”https://easychem.com.au/wp-content/uploads/2019/06/exothermic-reaction.jpg” alt=”” link=”false” href=”#” title=”” target=”” info=”none” info_place=”top” info_trigger=”hover” info_content=””][/cs_column][/cs_row][cs_row inner_container=”true” marginless_columns=”false” style=”margin: 0px auto;padding: 0px;”][cs_column fade=”false” fade_animation=”in” fade_animation_offset=”45px” fade_duration=”750″ type=”1/1″ style=”padding: 0px;”][cs_text]The forward reaction is exothermic because energy is released when  CaO(s)  and  H2O(l)  combine to form  Ca(OH)2(s) . The energy to break the bonds of each reactant is lower than the amount of energy released from forming the product, and the net difference is observed as heat on the right side of the equation.

In summary, a temperature increase favors an endothermic reaction, and a temperature decrease favors an exothermic reaction.[/cs_text][/cs_column][/cs_row][cs_row inner_container=”true” marginless_columns=”false” style=”margin: 0px auto;padding: 0px;”][cs_column fade=”false” fade_animation=”in” fade_animation_offset=”45px” fade_duration=”750″ type=”1/1″ style=”padding: 0px;”] [/cs_column][/cs_row][/cs_section][/cs_content]

Scroll to Top