The TCA Cycle as Oxidative Decarboxylation

[cs_content][cs_section parallax=”false” separator_top_type=”none” separator_top_height=”50px” separator_top_angle_point=”50″ separator_bottom_type=”none” separator_bottom_height=”50px” separator_bottom_angle_point=”50″ style=”margin: 0px;padding: 45px 0px;”][cs_row inner_container=”true” marginless_columns=”false” style=”margin: 0px auto;padding: 0px;”][cs_column fade=”false” fade_animation=”in” fade_animation_offset=”45px” fade_duration=”750″ type=”1/1″ style=”padding: 0px;”][cs_text]The Biochemistry of Movement > 9.7.8. Gentle exercise uses type 1 muscles and involves aerobic respiration > The TCA Cycle as Oxidative Decarboxylation >[/cs_text][cs_text style=”color: #800000;font-family: “Oxygen”,sans-serif;”]Outline the TCA cycle as oxidative decarboxylation with the addition of acetyl CoA as the energy source in each cycle[/cs_text][cs_text]

  • Decarboxylation:
    • The removal of a carboxyl group, which releases CO2. The TCA cycle contains many examples of this.
    • Oxidation reaction
  • Acetyl CoA fuels the TCA cycle.
  • Pyruvate is converted into Acetyl CoA via oxidative decarboxylation:
    • A carboxyl group is removed from Pyruvate and released as CO2.
    • The remaining 2-carbon portion is then oxidised by NAD+. NAD+ gains two hydrogens. The 2-carbon portion becomes acetic acid.
    • Coenzyme A attaches itself to the acetic acid, forming acetyl-CoA. This molecule is needed in order for the TCA cycle to continue.

[/cs_text][/cs_column][/cs_row][/cs_section][/cs_content]

Scroll to Top