[cs_content][cs_section parallax=”false” separator_top_type=”none” separator_top_height=”50px” separator_top_angle_point=”50″ separator_bottom_type=”none” separator_bottom_height=”50px” separator_bottom_angle_point=”50″ style=”margin: 0px;padding: 45px 0px;”][cs_row inner_container=”true” marginless_columns=”false” style=”margin: 0px auto;padding: 0px;”][cs_column fade=”false” fade_animation=”in” fade_animation_offset=”45px” fade_duration=”750″ type=”1/1″ style=”padding: 0px;”][cs_text]The Biochemistry of Movement > 9.7.7. Glycolysis is the first stage of the decomposition of glucose to release energy > The Role of Oxidation of Fatty Acids >[/cs_text][cs_text style=”color: #800000;font-family: “Oxygen”,sans-serif;”]Discuss the role of oxidation of fatty acids in the inhibition of the pyruvate conversion to acetyl CoA[/cs_text][cs_text]
- The 3-carbon pyruvic acid changes to CO2and a 2-carbon acetyl group (CH3CO), which attaches to Coenzyme A, forming acetyl CoA (CH3COCoA).
- The conversion of pyruvic acid to acetyl CoA reduces an NAD+molecule, which leads to the release of three ATP in the mitochondrion.
- Depending on the availability of fuels for the muscle cell, fatty acids can be used for energy production—especially by type 1 skeletal muscle cells.
- The breakdown of fatty acids to produce energy results in an increase in the compound acetyl CoA.
- Upon build-up of acetyl CoA, pyruvic acid is no longer converted to acetyl CoA in glycolysis.
- Conversion of pyruvic acid to acetyl CoA stops until all of the remaining acetyl CoA is used.
[/cs_text][/cs_column][/cs_row][/cs_section][/cs_content]